
March 24, 2012 10:7 WSPC/0219-8762 196-IJCM 1240019

International Journal of Computational Methods
Vol. 9, No. 1 (2012) 1240019 (11 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219876212400191

INTEGRATION OF SUBDIVISION METHOD
INTO BOUNDARY ELEMENT ANALYSIS

ZHUANG CHAO, ZHANG JIANMING∗, QIN XIANYUN,
ZHOU FENGLIN and LI GUANGYAO

State Key Laboratory of Advanced Design and
Manufacturing for Vehicle Body

Hunan University
Changsha, China

∗zhangjianm@gmail.com

Received 31 December 2010

Revised 2 June 2011

Subdivision surface modeling, which is based on polygon mesh modeling, can generate a
whole smooth geometry without limiting to the topology and connectivity. Meanwhile,
the boundary element analysis (BEA), which is based on the boundary integral equation,
requires only boundary discretization of the body in question. Thus, performing BEA
directly on the subdivision surface models may be a promising way to realize the seamless
integration. This work presents a unified framework for the BEA and CAD modeling
based on the subdivision surface. Numerical examples for 3D potential problems have
demonstrated that the implementation is successful.
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1. Introduction

The traditional CAE analysis and CAD modeling are usually independent of each
other. Models in CAE analysis, which is based on several numerical engineering
methods including the finite difference method, the finite element method and the
boundary element method, are discrete mesh models. Models in CAD modeling are
continuous parametric models. Hence, the primary work of the CAE analysis is to
convert the continuous model into a discrete model. During the conversion process,
geometric errors are inevitably introduced, as the discrete model is actually an
approximation of the continuous model. Meanwhile, the geometric error depends
on the size and order of the elements that are used in the discrete model. To get
better approximation, finer and a larger number of elements have to be used. This
process is usually very time-consuming. Moreover, to apply the CAE results to
design, it is often desirable to convert the discrete model back into the continuous
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model. This counter-conversion is even more difficult and, in most cases, almost
impossible. Therefore, the integration of the CAD modeling and the CAE analysis
has attracted intensive interests from both academic and engineering societies.

Many approaches have been proposed to link CAE and CAD seamlessly. Fehmi
et al. [2002] combined the subdivision method and the finite element method to
solve a shell problem. Hughes et al. [2005] proposed an isogeometry analysis that is
based on NURBS. Cirak and Ortiz [2001] used surface elements for shell deformation
problems. Zhang et al. [2009] proposed a boundary face method (BFM) that is based
on the B-rep data structure that is widely applied in most CAD solid modeling
packages. In the BFM, the geometric quantities such as the coordinates, outward
normals, and Jacobians at Gaussian integral points are calculated directly from the
parametric surface, and the integration and physical variable approximation are
performed in the parametric spaces of the surfaces.

The subdivision surface is an alternative solid modeling method to parametric
modeling. It generates a sequence of recursively refined meshes starting from an ini-
tial coarse control mesh. Subdivision surface can be considered as a generalization of
spline surfaces. However, in contrast to spline surfaces, the subdivision surface mod-
eling can represent structures of arbitrary topology without seaming and patching
operation, namely, the subdivision surface is restricted neither by topological nor by
geometric constraints as spline surfaces are [Zorin et al. (2000)]. Thus, it has been
widely applied in geometric modeling, shape design, and surface reconstruction.

Since the subdivision surface and the boundary element analysis (BEA) are both
performed based on the surface mesh, it is natural and convenient to perform BEA
directly on the model generated by subdivision method. Wang [2009] proposed the
idea of integration of CAD and BEA through subdivision surface. Unfortunately,
the author did not provide any numerical examples.

This paper presents a new framework based on the subdivision surface to imple-
ment BEA, in which both BEA and CAD models are represented identically with
the same subdivision model, realizing the integration of subdivision surface and
BEA. This paper is organized as follows: in Sec. 2, the subdivision surface and the
half-edge data structure used for representing and manipulating subdivision meshes
are introduced. Section 3 details the BEA based on subdivision surface. The BEA
and the steps in the implementation of BEA based on subdivision method are
described in Sec. 4. Some numerical examples are given in Sec. 5. This paper ends
with conclusions in Sec. 6.

2. Subdivision Surface and the Half-Edge Data Structure

2.1. Subdivision surface

Subdivision surface is a surface modeling technology that is based on polygon mesh.
It can represent structures of arbitrary topology. Furthermore, the solid represented
by subdivision surfaces is whole smooth. Due to its powerful modeling capabilities, it
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is widely applied in various areas including shape design and surface reconstruction.
The Loop subdivision scheme that is based on triangular meshes was proposed

first by Charles Loop [1987]. It is a dual approximation subdivision. As a generaliza-
tion of the Box Spline, the Loop subdivision scheme generates a C2 continuous limit
surface. Additionally, the loop subdivision scheme inherited the flexibility of repre-
sentation from mesh modeling and the capability of representing arbitrary topology
and geometry from the subdivision surface modeling. Hence, the loop subdivision
scheme is studied in this paper, and its subdivision meshes are directly used for
BEA.

2.2. The half-edge data structure

How to manage the subdivision mesh and to transfer the mesh information to BEA
effectively are important issues, as the subdivision process will generate a large
quantity of meshes. Here, we adopt a half-edge data structure and its function
library that is called the OpenMesh. The OpenMesh library [Botsch et al. (2002)]
consists of a number of functions that are efficient and versatile implementations of
the half-edge data structure. Moreover, it is a generic and efficient data structure
for representing and manipulating polygonal meshes.

The half-edge data structure, which has two half-edges opposite in direction by
splitting each edge, is employed in this paper to store the subdivision meshes. The
connectivity relations in the half-edge data structure are shown in Fig. 1.

As shown in Fig. 1, each vertex is related to an outgoing half-edge, i.e. the half-
edge from the vertex (1); each face points to an incident half-edge (2); in addition,
each half-edge provides several pointers, which point to the corresponding vertexes
(3), the face it belongs to (4), the next half-edge inside the face (5), the opposite
half-edge (6), and the previous in the face (7), respectively.

According to the connectivity relation between the mesh items, we are able to
enumerate all its vertices, half-edges, and adjacent faces. An example of searching
a vertex is illustrated in Fig. 2. We start from a mesh vertex. Then, we can search
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Fig. 1. The half-edge data structure.
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(a) (b)

(c) (d)

Fig. 2. Mesh items traversing: (a) Start at a vertex, (b) outgoing half-edge, (c) the opposite
half-edge, and (d) vertex the next-half edge pointing to.

for the vertex to which the outgoing half-edge of the vertex points. The opposite
half-edge can be found in the third step. Finally, we can get the neighbor vertex
to which the opposite half-edge points. We can repeat steps (b)–(d), until all the
neighbor vertices are found out. The adjacent faces can also be found analogously.

3. BEA Based on Subdivision Surface

The BEA [Brebbia et al. (1988); Long (2002)] is based on boundary integral equation
of boundary value problems and requires discretization of only the boundary. Thus,
it simplifies the analysis to a large extent by solving a small system of algebraic
equations [Kythe (1995)], and reduces the dimensionality of a problem by one.

In traditional BEA, the discretization of the boundary of geometry models,
namely surface meshes generation, is inevitable. The quality of the meshes mainly
depends on the user’s experience and intuition, which is the main source of the
analysis error. The accuracy and convergence of the BEA also depend on the qual-
ity of the meshes. Thus, an automatic and adaptive mesh generation for BEA is
important.

Subdivision surface uses the surface mesh for representation of models, and BEA
only need surface mesh generation of models. Therefore, subdivision surface itself
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can provide a geometric model for the BEA. Meanwhile, the adaptive subdivision
scheme is able to provide an automatic and adaptive BEA mesh generation scheme.
Thus, we use the subdivision meshes for BEA, coupling the CAD, and BEA through
subdivision surface.

3.1. Creating initial control mesh

The first step of BEA based on subdivision surface is creating the initial control
mesh. The creation of the initial control mesh depends on the body’s features, which
can be classified into form features and transitional features. The former refers to
basic planes, cylinder surfaces et al. The latter refers to features concatenating these
form features. Designers can use some interactive design packages for subdivision
surface modeling, such as Maya and 3DMAX, which allow designers to input and
edit the initial control mesh in terms of their design ideas.

3.2. BEA mesh generation

Traditional BEA mesh generation depends mainly on analysts. Different users with
different mesh generations may get different analysis results. For a complicate geom-
etry, the traditional BEA is time-consuming and there is no guarantee that the result
is sufficiently accurate. Thus, there is a need to develop an automatic and adaptive
BEA mesh generation scheme.

In our method, the subdivision mesh not only provides a representation for
geometry models, but also can be used as BEA mesh. As shown in Fig. 3(a), subdi-
vision meshes are used for representing geometry models. In Fig. 3(b), the meshes
are used for BEA. They are the same subdivision meshes. Adaptive subdivision
scheme, determining the subdivision times in terms of local flatness information,
can generate accurate subdivision meshes in accordance with geometry models and

(a) (b)

Fig. 3. Subdivision mesh and BEA mesh.
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fulfill adaptive BEA meshes. Moreover, subdivision surface can generate meshes at
different levels (from coarse to fine) to meet different requirements in accuracy of
geometry models and BEA.

4. Boundary Element Analysis

4.1. BEA description for the 3D potential problem

We take the 3D potential problem as an example to describe the BEA process. The
potential problem in three dimensions [Qin et al. (2010)] governed by Laplace’s
equation with boundary conditions is written as

u,ii = 0, ∀x ∈ Ω

u = ū, ∀x ∈ Γu

u,i ni ≡ q = q̄, ∀x ∈ Γq,

(1)

where the domain Ω is enclosed by Γ = Γu +Γq, ū and q̄ are the given potential and
normal flux, respectively, on the essential boundary Γu and on the flux boundary
Γq, and n is the outward normal direction to the boundary Γ, with components
ni,i = 1, 2, 3.

The problem can be recast into an integral equation on the boundary. The well-
known self-regular BIE for potential problems in 3D is

0 =
∫

Γ

(u(s) − u(y))qs(s,y)dΓ −
∫

Γ

q(s)us(s,y)dΓ, (2)

where q = ∂u/∂n, y is the source point, and s is the field point on the boundary.
us(s, y) and qs(s, y) are the fundamental solutions. For 3D potential problems,

us(s,y) =
1
4π

1
r(s,y)

, (3)

qs(s,y) =
∂us(s,y)

∂n
, (4)

with r(s, y) being the Euclidean distance between the source and field points.

4.2. Steps in the implementation of BEA based

on subdivision method

Subdivision surface generates a series of meshes converging into a whole smooth
limit surface. The geometry data can be calculated by the subdivision scheme
used. We use the subdivision mesh directly for BEA. This is the basic idea of
the BEA based on subdivision surface. The following steps are summarized for the
implementation:

(1) Creating the initial control mesh in terms of the geometry model.
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(2) Creating fine meshes through an iterative refinement process using the Loop
subdivision, until an ideal geometry model with sufficient accuracy of the part
is obtained.

(3) Using the subdivision mesh for BEA directly.
(4) Capable of shape optimizing for the subdivision model in accordance with the

BEA result.

5. Numerical Examples for 3D Potential Problems

In this section, we solve the Laplace equation

∇2u = 0, (5)

on two bodies of different geometries. In order to assess the accuracy of the method,
we have used the following cubic analytical field:

u = x3 + y3 + z3 − 3yx2 − 3xz2 − 3zy2. (6)

For the purpose of error estimation and convergence study, a “global” L2 norm
error, normalized by |v|max is defined as

e =
1

|v|max

√√√√ 1
N

N∑
i=1

(v(e)
i − v

(n)
i )2, (7)

where |v|max is the maximum value of u and q over N sample point and the super-
scripts (e) and (n) refer to the exact and numerical solutions, respectively.

5.1. A trimmed cubic

Figure 4 shows a trimmed cubic model, with the modeling process from the initial
control mesh to the subdivision model of third level. The relative errors for normal
fluxes at all boundary nodes are listed in Table 1. Due to the memory limitation of
the computer resource, the last model in Fig. 4 has not been analyzed for its too
large number of nodes.

Fig. 4. Subdivision models of a trimmed cubic.

1240019-7



March 24, 2012 10:7 WSPC/0219-8762 196-IJCM 1240019

C. Zhuang et al.

Table 1. BEA analysis result for a trimmed cubic.

Subdivision times 0 1 2

Vertices 88 376 1,528
Elements 192 768 3,072
Error (%) 33.06 4.382 1.597

Fig. 5. Relative errors of nodal q and convergence rates.

From Table 1, it is seen that acceptable results have been obtained using 376
vertices. The convergence rate is shown in Fig. 5. Although the results obtained by
the initial mesh are not acceptable, the numerical solution converges to the exact
solution quickly. For clarity, the normal flux on the boundary of the body is shown
in Fig. 6.

5.2. A mushroom

Figure 7 shows a mushroom, with the modeling process from the initial control
mesh to the subdivision model of third level. We have performed BEA for each
subdivision mesh. Results are presented in Table 2.

For this complicated geometry, acceptable results have been obtained using 242
vertices and very accurate results obtained using 3,842 vertices. The relative error
reduces dramatically as increasing numbers of vertices are used. The convergence
rate is shown in Fig. 8. The distribution of normal flux is illustrated in Fig. 9. Again,
the numerical solutions converge to the exact solution quickly. From Table 2, we can
see that the mesh quantities and the analysis accuracy increase four times by once
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Fig. 6. Contour for normal flux q.

Fig. 7. Subdivision models of a mushroom.

Table 2. BEA analysis results for a mushroom.

Subdivision times 0 1 2 3

Vertices 62 242 962 3,842
Elements 120 480 1,920 7,680
Error (%) 13.57 4.844 0.73 0.24

subdivision. Most importantly, our method can perform BEA at every subdivision
level automatically. This feature is particularly useful for adaptive analysis.

6. Conclusions

The subdivision surface and BEA analysis are integrated into a unified framework
in this paper. The subdivision surface can be applied to represent structures of
arbitrary topology without seaming and patching operations, thus the combined
method is able to analyze complicated structures automatically.

Two numerical examples are presented. High convergence rates have been
achieved. The results of normal fluxes for the two examples are accurate, accord-
ing to their relative errors. However, the examples presented in this paper are just
results at the primary stage of our research.
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Fig. 8. Relative errors of nodal q and convergence rates.

Fig. 9. Normal flux q contour.

The most exciting feature of our method, perhaps, is that it unifies the geo-
metric modeling and CAE into a unique framework and thus has potential to offer
very promising applications in practical engineering. The only drawback is that the
quality of the subdivision mesh is not good enough to get acceptable analysis accu-
racy in some cases. How to avoid this pitfall is a planned investigation in our future
research. Nevertheless, the advantages are so attractive that this method deserves
consideration.

Combining our method with the fast multipole method [Zhang et al. (2010)] to
implement BEA for large-scale subdivision mesh is also a main topic in our future
work.
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